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Abstract

Topological interactions will be generated in theories with compact extra dimensions
where fermionic chiral zero modes have different localizations. This is the case in many
warped extra dimension models where the right-handed top quark is typically localized
away from the left-handed one. Using deconstruction techniques, we study the topological
interactions in these models. These interactions appear as trilinear and quadrilinear gauge
boson couplings in low energy effective theories with three or more sites, as well as in
the continuum limit. We derive the form of these interactions for various cases, including
examples of Abelian, non-Abelian and product gauge groups of phenomenological interest.
The topological interactions provide a window into the more fundamental aspects of these
theories and could result in unique signatures at the Large Hadron Collider, some of which
we explore. We also show that it is generally not possible to have stable KK-mode dark
matter candidates in these scenarios owing to the violation of KK parity by the topological
interactions.
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1 Introduction

The origin of electroweak symmetry breaking (EWSB) is one of the most important questions

in particle physics and will likely lead to the discovery of new organizing principles beyond the

standard model. As we enter the era of the Large Hadron Collider (LHC) with the promise of

new discoveries of new states in nature, it remains nonetheless unclear how much of the deeper

organizing context for EWSB can be understood at the TeV scale.

For instance, consider solutions of the gauge hierarchy problem involving theories with a

compact extra dimension in AdS space [1]. These are thought to be a dual description of a

large-N , D = 4, strongly coupled sector characterized by conformal dynamics [2, 3]. The low

energy spectrum, however, is typically populated by an assortment of new vector resonances

with various standard model quantum numbers, and possibly new heavy fermions. We might

then seek probes that could reveal the deeper UV completion structure. These can arise from

anomalous, or “topological” processes, associated with the gauge dynamics of chiral fermions,

much like the low energy process, π0 → 2γ, counts the quark colors in QCD.

Chiral fermions are required as part of the low energy spectrum of any model, often aris-

ing by chiral localizations in extra dimensional models, whereby left-handed fermions occur at

one place in the bulk, whilst their right-handed anomaly-canceling partners occur elsewhere.

This has immediate implications for the anomaly structure of such theories, or more properly,

the Chern-Simons (CS) term structure. The CS term propagates the anomaly from one chiral

fermion to another and maintains the anomaly cancellation across the extra dimension. Al-

though it is well understood that anomalies in orbifold theories are brane-localized and canceled

by a suitable bulk CS term, the associated observable consequences of CS terms have not been

fully elaborated in the literature. This is important since the associated CS interactions, in-

volving gauge KK-modes, point to fundamental aspects of the underlying theory in analogy to

π0 → 2γ in QCD.

Anomalies and CS terms in extra dimensional models have been previously considered in

the literature. These descend from gauge boson solitons that are topological objects, such as

the instantonic vortex, arising in D = 5 and whose conserved currents are generated by the CS

term [4]. In Ref. [5], deconstruction was used to show how anomalies are canceled in theory

space by the Wess-Zumino-Witten (WZW) terms present on each link, as well as illustrating

the appearance of the CS term in the continuum limit of a flat compact extra dimension (see

also [6]). To cancel anomalies in orbifold theories with delocalized chiral zero modes, CS
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terms must necessarily occur. CS terms, in turn, produce physical consequences: in D = 3

QED the CS term yields a mass for the photon and destroys Dirac magnetic monopoles (see

[7] and references therein). Likewise, in D = 5, CS terms lead to observable physical effects,

first pointed out in Ref. [8], where, as a general consequence, they violate KK-parities. This is

analogous to the violation of π → −π spurious pion parity in a chiral lagrangian of mesons by

the WZW term in QCD. These physical effects can most easily be understood by considering

three very massive D = 5 bulk KK-mode wave-packets each vanishing on the branes where the

fermions are localized. The bulk CS term operator will generally have a non-vanishing overlap

integral for such wave-packets, provided overall KK-mode parity is odd. The pure CS term

in the bulk controls these interactions. For lower KK modes, whose wave-functions touch the

fermionic branes, the loop diagrams of the localized fermions become relevant, leading to the

counterterm structure that enforces, e.g., vector-like current conservation [8] (or, alternatively,

chiral current conservation, with the appropriate counterterm [9]).

This observation has been applied in Refs.[10] to Little Higgs theories, which can be viewed

as deconstructed extra dimensional theories. Aside from identifying certain special processes in

electron or muon collider experiments that probe CS terms, a key result is that it is generally

difficult to maintain a stable dark matter KK-mode candidate in the presence of CS terms.

This is an effect that will recur in the present paper. Some aspects of anomalies in warped

extra dimension models were studied in Ref. [11].

In this paper we will consider the remnant topological interactions at low energy resulting

from bulk Chern-Simons terms in theories with warped extra dimensions. In order to clarify

the origin of these new interactions amongst KK gauge bosons we first deconstruct [12] these

theories (this was previously done in Refs. [13, 14]). Pure gauge boson containing CS-term

interactions are seen to be absent in two-site deconstructions1. These first appear in decon-

structions with three or more sites. This has important consequences in the phenomenology of

these interactions in the continuum limit, most notably the fact that – as long as the zero-mode

1 This is strictly true for vector-like gauge zero-modes. A two site model is analogous to the chiral constituent
quark model U(N)L × U(N)R with quarks qL and gauge bosons AL (qR and AR) on the L-site (R-site), and
a constituent quark mass involving pions. This can be viewed as descending from a vector-like SU(N) D = 5
Yang-Mills bulk theory with chiral localizations generated by domain walls. A CS term is present in D = 5 and
becomes the WZW term in D = 4 that compensates the quarks consistent anomalies on the walls. The WZW
term contains trilinear and quadrilinear ”pCS” terms [9] at this stage, but when the quarks are integrated out,
a Bardeen counterterm is generated, conserving the vector currents, enforcing the Landau-Yang theorem and
annihilating the pCS terms. In a three site model even with quarks integrated out and conserved zero-mode
vector currents, the pCS terms involving higher KK-modes remain. Note that one can modify the counterterm
when the L, or R currents are conserved, as in Standard Model gauging. This is then not a vector-like scheme.
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gauge symmetry remains unbroken – these interactions must involve the second KK mode of

the gauge boson. Amongst the various interactions the most accessible involves the gluon and

its first and second KK modes. This results in a new decay mode for the second KK mode:

G(2) → G(1)g, which gives a non-negligible contribution to the G(2) width. It also allows for the

associated production process pp → G(2)G(1) to be observable at the LHC as long as the KK

masses are not too heavy, as is the case, for instance, in warped Higgsless models.

We will show that the requirement that a second KK mode be present can be circumvented

when one of the gauge bosons in the interaction is associated with a broken gauge symmetry.

This leads to many new interactions involving the Z boson with KK gauge bosons and other

zero modes. We will study the phenomenology of the most promising interactions, including

the one involving a gluon and its two first KK modes, as well as one with a gluon, its first KK

mode and the Z.

Finally, we consider a proposed warped extra dimension scenario with KK parity [15] and

show that the topological interactions necessarily break this symmetry leading to the instability

of the lightest KK-odd particle. For essentially the same reasons as described in Refs.[10], it is

difficult to maintain stable dark matter KK-modes in theories with chiral fermions due to the

anomalous interactions.

In the next section we consider in detail the deconstruction [12] of a warped D = 5 the-

ory including fermions and gauge bosons. A complete treatment of fermions in warped extra

dimension theories is not present in the literature and is central for our derivations. In decon-

struction, the CS term becomes a sum over interlinking WZW terms. In unitary gauge, where

all KK-modes eat their corresponding Nambu-Goldstone Bosons (the link field phases) the sum

over WZW terms immediately reduces to the discretized version of the CS term. None of this

makes any sense, however, without utilizing Wilson fermions in deconstructed theories. We

make use of the Wilson fermion action for warped theories, first introduced in Refs. [6, 13], and

further developed here. It is crucial for our derivation of the WZW terms which give rise to

the bulk Chern-Simons terms in the continuum limit. This is done in Section 3, in the limit of

extreme zero-mode fermion localization, Ref. [15], where we also explicitly show how anomaly

cancellation works. In Section 4 we show that the existence and detailed form of the induced

topological interactions depend on the localization of zero-mode fermions. In Section 5 we

derive the remnant processes of interest for phenomenological applications: interactions among

three vector states involving Kaluza-Klein modes of the gauge bosons. We show how these in-

teractions arise from the Chern-Simons terms paying particular attention to gauge invariance.

3



Finally, in Section 6 we study some of the phenomenological consequences of these interactions,

such as collider signals at the LHC, as well as the induced breaking of KK parity in models

with a Z2-symmetric warp factor. We conclude in Section 7.

2 Deconstruction of a Warped Extra Dimension

In order to clarify the presence of remnant topological interactions in theories with warped

extra dimensions and chiral zero modes, we will deconstruct the extra dimension [12]. The

deconstruction of warped extra dimensions has been studied for the gauge sector in Ref. [14],

whereas fermions are also considered in Ref. [13]. We first briefly review the warped extra

dimension scenario in the continuum.

We start with one extra dimension y compactified on an orbifold S1/Z2, with −L ≤ y ≤ L,

and with the metric [1]

ds2 = e−2kyηµνdx
µdxν − dy2 ≡ gMNdx

MdxN (1)

where µ = 0, 1, 2, 3, k is the AdS5 curvature and ηµν = diag(+ − −−) is the 4D Minkowski

metric. In the following, we will use Greek letters for 4D indexes and Latin letters for 5D

indexes.

For fermions and gauge bosons propagating in the bulk of AdS5, the 5D action is then given

by [16]

S5 =

∫

d4x

∫ L

0

dy
√
g

[

− 1

2 g2
5

Tr[F 2
MN ] + i Ψ̄ ΓM∇M Ψ + MΨ Ψ̄Ψ + · · ·

]

. (2)

Not shown are the 5D Ricci scalar and the cosmological constant. The fifth dimension y is

compactified with the IR (UV) branes located at the y = L (0) of the fifth dimension. FMN is

the field strength of the gauge group, which can be either Abelian or non-Abelian. The gamma

matrices are defined as ΓM = eA
MγA, where eA

M is the vielbein, and γA = (γα, iγ5) is defined in

the tangent space. The curved space covariant derivative is ∇M = DM + ωM , with the spin

connection ωM = (k
2
γ5 γµe

−ky, 0). The fermion Dirac mass is MΨ ≡ c k, and is assumed to

be the result of the vacuum expectation value of a scalar field odd under a Z2 transformation

defined by y → −y.
Before deconstructing this model, we review the spectrum of KK modes and their 5D wave

functions, both for gauge bosons and fermions. By choosing Neumann-Neumann boundary

conditions for the gauge boson in the following way: ∂5Aµ(0) = ∂5Aµ(L) = 0 and A5(0) =
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A5(L) = 0, the Aµ has a 4D zero mode with a flat profile in the fifth dimension. The equation

of motion for the massive Kaluza-Klein (KK) modes is [16]

∂2
5fn − 2 k ∂5fn +m2

n e
2 k yfn = 0 , (3)

where the KK expansion is given by

Aµ(x, y) ≡ 1√
L

∞
∑

n=0

fn(y)An
µ(x) , A5(x, y) ≡

1√
L

∞
∑

n=1

∂5fn(y)

mn
An

5 (x) , (4)

with the normalization condition g−2
5

∫ L

0
f 2

ndy = 1. The solution of the gauge boson KK modes

is

fn(y) =
ek y

Nn

[

J1

( mn

k e−ky

)

+ b1Y1

( mn

k e−ky

)]

, (5)

where b1 is a function of the KK mode mass mn and is determined by the boundary conditions,

and Nn is a normalization factor.

Fermions must transform under the Z2 symmetry as Ψ(−y) = ±γ5Ψ(y) with γ5 = diag(1,−1).

In terms of Dirac spinors Ψ = ΨR +ΨL, the zero mode of ΨR(ΨL) is even for Ψ(−y) = +γ5Ψ(y)

(Ψ(−y) = −γ5Ψ(y)). Therefore, the choice of the boundary condition makes the low energy

effective 4D theory chiral. The equation of motion for the fermion KK modes is given by

∂2
5h

n
L,R − 2 k ∂5 h

n
L,R +

(

3

4
− c(c± 1)

)

k2 hn
L,R + m2

n e
2ky hn

L,R = 0 , (6)

with “+” for the left-handed modes and “–” for the right-handed modes. Here,

ΨL,R ≡
e

3
2

k y

√
L

∞
∑

n=1

hn
L,R(y)ψn

L,R(x) , (7)

and the normalization condition 1
L

∫ L

0

∣

∣hn
L,R

∣

∣

2
dy = 1. The solutions for the fermion KK modes

are then

hn
L,R(y) =

ek y

Nn

[

J|c± 1
2
|

( mn

k e−ky

)

+ b|c± 1
2
|Y|c± 1

2
|

( mn

k e−ky

)]

. (8)

with Nn normalization factors. The fermion zero modes have an exponential profile given by

h0
L,R(y) =

1

N0
e(

1
2
∓c)k y . (9)
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Therefore, a left-handed zero mode is UV (IR)-localized for cL > 1/2 (cL < 1/2). On the

other hand, a right-handed zero mode is UV (IR)-localized for cR < −1/2 (cR > −1/2). In a

wide class of warped extra-dimension models, both left-handed and right-handed zero-modes

of SM fermions are mostly UV-localized for all fermions except for the third generation quarks.

Typically in these models, in order to obtain a large enough top quark mass, tR is localized close

to the IR brane, with the third generation quark doublet (tL bL)T somewhere in between the

IR and UV branes. We will show later that it is precisely due to the different fifth-dimension

profiles for the top quark chiral zero modes, that there exist physical topological interactions

among gauge bosons.

2.1 Deconstruction of the 5D Gauge Theory and the Dictionary

In order to establish a dictionary between the continuum theory and the 4D deconstructed one,

we start with the purely bosonic 4D moose model with N + 1 sites depicted in Figure 1. This

results in the action

SG
4 =

∫

d4x

{

− 1

2 g2

N
∑

j=0

Tr
[

F j
µνF

jµν
]

+
N

∑

j=1

Tr |DµUj |2
}

, (10)

with the covariant derivative given by DµUj = ∂µUj + i Aj−1
µ Uj − i Uj A

j
µ with Aj

µ ≡ Aj
a,µ t

a,

where the link fields Uj transform as (n, n̄) under SU(n)j−1×SU(n)j and ta is the generator of

SU(n) normalized as tr[tatb] = 1
2
δab. We assume that the vacuum expectation values (VEVs)

of Uj break SU(n)j−1 × SU(n)j to the diagonal group by minimizing some potentials. In the

non-linear parametrization, we have Uj =
vj√
2
ei Gj/vj In, where the Gj are the Nambu–Goldstone

bosons of the breaking of SU(n)j−1 × SU(n)j , and vj are the corresponding VEVs. Then, in

the unitary gauge, we can write

SG
4 =

∫

d4x

{

− 1

2 g2

N
∑

j=0

Tr
[

F j
µνF

jµν
]

+
1

2

N
∑

j=1

Tr
[

vj(A
j−1
µ − Aj

µ)
]2

}

. (11)

In order to match to the continuum warped extra-dimension theory, we choose the VEV in

each site as

vj ≡ v qj , (12)

such that 〈Uj〉 = v√
2
qj with 0 < q < 1. Hence, from the zeroth site to the N -th site, the VEVs

of the link field are decreasing. We identify the zeroth site as the UV brane and the N -th site

as the IR brane when we match this discretized 4D model to the continuum warped space.
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U1 U2 UN

SU(n)0 SU(n)1 SU(n)2 SU(n)NSU(n)N−1

Figure 1: Deconstruction of a gauge theory in a warped extra dimension. The circles represent
SU(n) gauge groups. The zeroth site and the N-th site are identified as the UV and IR brane
in the continuous theory, respectively. The link scalar fields Uj, are (n, n̄) under SU(n)j−1 ×
SU(n)j.

To justify the choice of the VEVs in Eq. (12), we need to show that the spectra and the wave-

functions of the gauge bosons agree with the results in the continuum limit. For convenience, we

choose the unitary gauge, in which the gauge boson mass matrix in the basis (A0, A1, · · · , AN)

can be written in powers of q as

M2
g = g2 v2































q2 −q2 0 0 · · · 0 0

−q2 q2 + q4 −q4 0 · · · 0 0

0 −q4 q4 + q6 −q6 · · · 0 0

...
...

...
... · · · ...

...

0 0 0 0 · · · q2(N−1) + q2N −q2N

0 0 0 0 · · · −q2N q2N































. (13)

We define the orthonormal rotation matrix between the gauge basis An and mass basis A(n)

as Aj
µ =

∑N
n=0 fj,nA

(n)
µ . Solving this eigensystem problem, we arrive at the following difference

equations [17]

(

q + q−1 − q−1(xn q
−j)2

)

fj,n − q fj+1,n − q−1 fj−1,n = 0 , (14)

The corresponding Neumann-Neumann “boundary conditions” are: f0,n = f−1,n and fN,n =

fN+1,n, with xn = mn/(g v). For the gauge boson zero mode, it is easy to show that fj,0 =

1/
√
N + 1 , i.e. the solution is a flat profile. For the massive modes, we define the variable

t[j] = xn q
−j and the function F (t[j]) = qj fj,n to change Eq. (14) to

(q + q−1 − q−1t2)F (t) − F (t q−1) − F (t q) = 0 . (15)

The above difference equation is a special case of the Hahn-Exton equation [18]. Its solutions

are the so-called q-Bessel functions Jν(t; q
2) for ν = 1 in the mathematical literature. The
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solution of the difference equation in (15) is

fj,n = Rn q
−j

[

J1(xn q
−j; q2) + b1(xn; q2) Y1(xn q

−j; q2)
]

, (16)

with Rn determined from wave-function normalization. This corresponds to the j-site “wave-

function” of the n-th KK gauge boson, and it allows us to construct the mass eigenstates

A
(n)
µ . Imposing the boundary conditions around j = 0 and j = N mentioned above, we obtain

b1(xn; q2) and the following equation [17]

J0(xn; q2) Y0(xn q
−(N+1); q2)− Y0(xn; q2) J0(xn q

−(N+1); q2) = 0 , (17)

the solution of which gives the mass spectrum. This procedure is very similar to the one

followed in the continuum. In fact it can be shown that in the continuum limit, corresponding

to q → 1−, the solutions (16) to the discrete equation of motion match to the solutions (5)

for the wave-functions of the KK gauge bosons in the continuum. It is also easy to show that

the mass eigenvalues match to the KK-mode masses of the continuum theory. We can see the

equivalence of both theories by using the following dictionary

1

g2
↔ a

g2
5

(18)

vj ↔ e−kaj

a
(19)

We can then rewrite (11) as

SG
5 =

a

g2
5

∫

d4x

{

−1

2

N
∑

j=0

Tr
[

F j
µνF

jµν
]

+
1

2

N−1
∑

j=0

e−2kaj Tr

(

Aj+1
µ − Aj

µ

a

)2
}

, (20)

where a is the constant lattice spacing, and g5 is the 5D gauge coupling. With these replace-

ments and taking the limit a→ 0, N →∞ for N a = L, we obtain the 5D gauge action in the

continuum

SG
5 =

∫

d4x

∫ L

0

dy
√
g

{

− 1

2 g2
5

Tr[F 2
MN ]

}

. (21)

2.2 Deconstruction of the Warped Fermion Theory

In order to write down the deconstructed version of the fermion theory in warped extra dimen-

sions, it is convenient to rewrite the fermion action in (2) as

Sf
5 =

∫

d4x

∫ L

0

dy
{

e−3ky Ψ̄iγµD
µΨ + e−4ky MΨΨ̄Ψ− e−4ky Ψ̄γ5

←→
∂5 Ψ

}

(22)
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in the A5 = 0 gauge, with
←→
∂5 ≡ (1/2)(

−→
∂5 −

←−
∂5). Naively deconstructing this 5D theory results

in the N + 1 site action

Sf
5 =

∫

d4x
N

∑

j=0

{

ψ̄j
Li/∂ψ

j
L + ψ̄j

Ri/∂ψ
j
R + e−kaj MΨ ψ̄

jψj

+
e−kaj

2a

(

ψ̄j
Rψ

j+1
L − ψ̄j

Lψ
j+1
R + h.c.

)

}

, (23)

which is obtained after proper normalization of the fermion kinetic terms (absorbing e−3ky/2

into the fermion field). However, the theory described by (23) is not the correct discretization

of the continuum action since it leads to doubling of all levels, and in particular to two massless

chiral fermions, i.e. two zero modes. This is a reflection of the well known fermion doubling

problem in lattice gauge theories. A solution to this problem is the introduction of a Wilson

term in the 5D action [19] of the form

SW = η a

∫

d4x

∫ L

0

dy
√
g Ψ̄ (∂5)

2 Ψ , (24)

where at this point η is an arbitrary coefficient. The Wilson term in (24) is a higher-dimensional

operator suppressed by a, and therefore vanishes in the continuum limit. The discretization of

the compact dimension in (24) gives

SW = η

∫

d4x
N

∑

j=0

e−kaj

a

{

ψ̄j
Lψ

j+1
R + ψ̄j

Rψ
j+1
L − 2ψ̄j

Lψ
j
R + h.c.

}

, (25)

where we have already properly normalized fermion fields. The full discretized action is then

obtained when adding (25) to (23)

Sf
5 + SW =

∫

d4x
N

∑

j=0

{

ψ̄j
Li/∂ψ

j
L + ψ̄j

Ri/∂ψ
j
R + e−kaj (MΨ −

2η

a
) ψ̄jψj

+

[

(η − 1

2
)
e−kaj

a
ψ̄j

Lψ
j+1
R + (η +

1

2
)
e−kaj

a
ψ̄j

Rψ
j+1
L + h.c.

]}

. (26)

We can see that by choosing η = ±1/2 it is possible to eliminate one of the hopping directions

in the lattice, which results in removing one of the two zero modes. For instance, for η = 1/2,

we obtain

Sf
5 + SW =

∫

d4x

N
∑

j=0

{

ψ̄j
Li/∂ψ

j
L + ψ̄j

Ri/∂ψ
j
R +

e−kaj

a
(cka− 1) ψ̄jψj

+

(

e−kaj

a
ψ̄j

Rψ
j+1
L + h.c.

)}

. (27)
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corresponding to only one hopping direction, as illustrated in Figure 2.

Thus, the 5D theory can be written as a purely four-dimensional model corresponding to

the moose diagram in Figure 2. The generic form of the Lagrangian of this N + 1 site moose

U1 U2 UN

ψ̄R,0

ψL,0

SU(n)0

ψL,1 ψL,2 ψL,N−1 ψL,N

ψ̄R,1 ψ̄R,2 ψ̄R,N−1

SU(n)1 SU(n)2 SU(n)NSU(n)N−1

Figure 2: Moose diagram to deconstruct the warped extra dimension model with fermions. The
circles represent SU(n) gauge groups. The zeroth and N-th sites are identified as the UV and IR
branes in the continuum theory, respectively. The out-going (in-going) arrows represent chiral
fermions in the fundamental (anti-fundamental) representation of SU(n). The link scalar fields,
Ui, are (n, n̄) under SU(n)i−1×SU(n)i. The dotted lines represent Yukawa couplings for chiral
fermions. Boundary conditions imply the absence of ψ̄R,N leading to a left-handed zero mode.
To obtain a right-handed zero mode, one has a similar moose diagram with the same hopping
direction but different boundary conditions, which correspond to removing ψL,0.

diagram is given by

L = −1

2

N
∑

j=0

Tr
[

F j
µν F

µν,j
]

+
N

∑

j=1

Tr |∂µUj + i g Aj−1
µ Uj − i g Uj A

j
µ|2

+
N

∑

j=1

λTr (ψ̄R,j−1 Uj ψL,j + h.c.) +
N

∑

j=0

Tr (µj ψ̄L,j ψR,j + h.c.) + · · · , (28)

where we have used the canonical kinetic terms for the gauge fields and absorbed the group

generator into Aj
µ, and “Tr” acts on the group indexes. Here, we have not included the scalar

potential, which fixes the link field VEVs 〈Uj〉 =
vj√
2

= v√
2
qj . In order to match to the theory

in the continuum limit, we have found that the following conditions should be satisfied, in
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addition to the dictionary in Eq. (19):

µj = −g v qc+j−1/2 , λ =
√

2 g , q → 1− . (29)

Just as for the case of gauge bosons, here q < 1 and q → 1− corresponds to taking the continuum

limit. The c parameter in the matching condition (29) for µj will be identified as the bulk mass

parameter in the continuum theory, which controls the localization of the fermion zero mode.

We can repeat the same procedure followed for the gauge bosons in order to obtain the

difference equations leading to the solutions for the spectrum of fermion modes. The fermion

mass-squared matrix in the basis (ψL,0, ψL,1, · · · , ψL,N) can be written as:

mT m =































µ2
0 g µ0 v1 0 0 · · · 0 0

g µ0 v1 g2v2
1 + µ2

1 g µ1 v2 0 · · · 0 0

0 g µ1 v2 g2v2
2 + µ2

2 g µ2 v3 · · · 0 0

...
...

...
... · · · ...

...

0 0 0 0 · · · g2v2
N−1 + µ2

N−1 g µN−1 vN

0 0 0 0 · · · g µN−1 vN µ2
N































.(30)

Using the orthonormal rotation matrix ψL,j =
∑N

n=0 h
L
j,n ψL,(n) and substituting µj in Eq. (29)

into the above equation, we arrive at the following difference equations

(

q−(c+ 1
2
) + q(c+ 1

2
) − q−(c+ 1

2
)(xn q

−j)2
)

hL
j,n − q hL

j+1,n − q−1 hL
j−1,n = 0 . (31)

Similarly, for the right-handed fermions, we obtain

(

q−(c− 1
2
) + q(c− 1

2
) − q−(c− 1

2
)(xn q

−j)2
)

hR
j,n − q hR

j+1,n − q−1 hR
j−1,n = 0 . (32)

The solutions to the above two difference equations are

hL,R
j,n = RL,R

n q−j
[

J|c± 1
2
|(xn q

−j; q2) + b|c± 1
2
|(xn; q2) Y|c± 1

2
|(xn q

−j ; q2)
]

, (33)

with the “+” sign for left-handed fermions and “–” sign for right-handed fermions, and where

RL,R
n are normalization factors. These solutions match, in the continuum limit, to the general

solutions of the 5D theory given in (8). To obtain a chiral zero mode, we choose the boundary

condition hR
N,n = 0 for all n to get a left-handed zero-mode fermion, and hL

0,n = 0 for all n to
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get a right-handed zero mode. These boundary conditions are equivalent to removing ψR,N or

ψL,0 from the theory and are illustrated in Fig. 2. For instance, for the case of a left-handed

zero mode and solving Eq. (31), we have

hL
j+1,0

hL
j,0

= qcL − 1
2 . (34)

Since q < 1, the left-handed zero mode is therefore “localized” in theory space toward the left

side of the moose diagram for cL > 1/2, whereas for cL < 1/2, toward the N -th site. Then, upon

taking the continuum limit this choice matches the corresponding behavior of a left-handed zero

mode in the continuum theory, by identifying the zeroth site with the UV brane and the N -th

site with the IR brane. Conversely, for the right-handed zero mode we obtain:

hR
j+1,0

hR
j,0

= q−(cR + 1
2
) , (35)

so that for cR > −1/2 the right-handed zero mode is “N -th-site” (IR) localized, whereas for

cR < −1/2 it is localized towards the zeroth site corresponding to UV localization in the

continuum.

It is useful to consider the behavior of these solutions in various limits and compare them

to the continuum limit case. For instance, if we are considering a left-handed zero mode

solution in the µj/vj → 0 limit, we see that this requires cL ≫ 1/2, which corresponds to

extreme UV localization in the continuum theory. On the other hand, the limit µj/vj → ∞
requires cL ≪ 1/2, which corresponds to extreme IR localization in the continuum. Conversely,

for a right-handed zero mode the limit µj/vj → 0 leads to cR ≫ −1/2, corresponding to IR

localization in the continuum, with the limit µj/vj →∞ corresponding to a UV-localized right-

handed zero mode. The matching between the continuum theory and the discretized theory for

various limits is illustrated in Table 1. In the next section we will make use of results obtained

left-handed fermion right-handed fermion

cL ≫ 1
2

(UV) ↔ µj

vj
→ 0 cR ≫ −1

2
(IR) ↔ µj

vj
→ 0

cL ≪ 1
2

(IR) ↔ µj

vj
→∞ cR ≪ −1

2
(UV) ↔ µj

vj
→∞

Table 1: Matching of the continuum theory and the discretized theory for different limits.
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in these limits in order to compute the low energy interactions induced after requiring anomaly

cancellation.

3 Anomaly Cancellation

Having completed our understanding of the deconstructed version of warped extra dimensional

theories and their continuum limit, we are now in a position to study the necessary ingredients

for anomaly cancellation in these theories. We will derive the Chern-Simons terms for different

gauge theories in warped extra dimensions, starting from the deconstructed theory. However,

one should notice that the procedure described in this section can also be applied to flat extra-

dimensions, since the CS terms only depend on the topological properties of gauge theories,

and therefore should be independent of a particular geometry. As an example, we explicitly

work out the simplest case with a U(1) gauge group propagating in the bulk. We first calculate

the WZW terms based on the moose diagram in the 4D theory, and then take the continuum

limit to obtain the 5D CS terms. We then move to compute the CS terms for non-Abelian as

well as product gauge groups.

For the case of a U(1) gauge group, we consider two “bulk” fermions, Ψ and X, which have

ψ
(0)
L and χ

(0)
R as their left-handed and right-handed zero modes, respectively. Under the U(1)

gauge group, Ψ and X have the same charge Q, so the 4D anomaly is canceled for the unbroken

U(1) gauge group in the low energy theory. However, in the 5D theory or in its deconstructed

version, the anomaly is not canceled without additional terms. This can be seen from Fig. 2,

where there is a triangular anomaly at the N -th site for the Ψ field. Similarly, there is a

triangular anomaly on the zeroth site for the X field. These triangle anomalies can be canceled

in the continuum theory by adding an appropriate CS term [8, 20]. Here, we also want to show

how the anomaly cancellation works in the deconstructed theory and how to match to the CS

term in the continuum.

Preserving the gauge symmetry, the deconstructed Lagrangian is

L = −1

4

N
∑

j=0

F j
µν F

µν,j +

N
∑

j=1

|∂µUj + i g Aj−1
µ Uj − i g Uj A

j
µ|2

+

N
∑

j=1

λ (ψ̄R,j−1U
Q
j ψL,j + h.c.) +

N
∑

j=0

(µj ψ̄L,j ψR,j + h.c.) + · · · , (36)

The link field Uj is charged as (1,−1) under U(1)j−1 × U(1)j . Integrating out heavy fermions
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with chiral masses, results in the appearance of WZW terms in the low energy theory. In the

case at hand, to integrate out all fermions other than the zero-mode and for the most generic

case µj/vj ∼ O(1), the action obtained will depend on the localization of ψ
(0)
L and χ

(0)
R through

these ratios [21]. Although it is possible to obtain the WZW terms generated, their sum in

the continuum limit has a non-trivial dependence on cR and cL through non-local terms in the

extra dimension. On the other hand, it is quite simple to obtain the continuum result for the

cases with µj/vj = 0 and µj/vj →∞.

First, let us consider the µj/vj = 0 limit for both Ψ and X fermions. As discussed at the end

of the previous section and in Table 1, this corresponds to an extremely UV-localized ψ
(0)
L and

an extremely IR-localized χ
(0)
R . For the Ψ field, the fermion mass matrix is “diagonal” in the

sense that ψR,j−1 and ψL,j form a massive Dirac fermion without mixing with other fermions.

So, integrating out the massive fermions ψR,j−1 and ψL,j , we arrive at a summation of WZW

terms [22]

Seff =
N

∑

j=1

SWZW(Aj−1, Aj, Uj)

=
1

48π2

∫ N
∑

j=1

[

α4(QAj , ξ
Q
j d ξ

Q†
j ) − α4(QAj−1, ξ

Q†
j d ξQ

j ) − B(A
ξQ
j

j−1, A
ξQ†
j

j )

]

. (37)

Here, we defined ξj by Uj ≡ ξ2
j ; A

ξQ
j

j−1 ≡ QAj−1 + ξQ†
j d ξQ

j , and the Bardeen counter-term is

defined by B(A1, A2) = 2(dA1+dA2)A1A2 for this case at hand. We make use of 1-form notation

such that A ≡ g Aµ d x
µ and d ≡ dxµ∂/∂xµ. We omit the 4D Levi-Civita ǫ tensor, so that any

product of 1-forms and their derivatives are contracted by it. The 4-form α4 can be calculated

by acting the homotopy operator on the CS 5-form and has the expression α4(A,B) ≡ 2 dAAB

for the U(1) case [23]. After some algebraic manipulations, we obtain

Seff =
Q3

48 π2

∫ N
∑

j=1

[

2Aj−1 dAj−1Aj + 2Aj−1 dAj−1Uj dU
†
j + U †

j dUj dAj−1Aj − p.c.
]

,(38)

where p.c. denotes parity conjugation such that Aj−1 ↔ Aj and Uj ↔ U †
j (for the non-Abelian

case, see Ref. [5]). Taking the continuum limit (a→ 0), we identify Aj−1 = A(y), Aj = A+a ∂5A

and Uj = 1 + aA5, and keep only the terms of order a. Identifying aΣj as
∫

dy, we arrive at

the CS term in the 5D theory:

Seff = −SCS =
−Q3

24 π2

∫

AdAdA =
−Q3

24 π2

∫

d5x ǫABCDEAA ∂B AC ∂D AE . (39)
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One can check that all anomaly terms can be canceled by adding the CS term into the 5D

continuous theory [8]. It is easier to understand this cancellation in the deconstructed moose

theory. For the Ψ field, the boundary conditions are equivalent to removing the right-handed

particle ψR,N at the last site to obtain a left-handed zero mode. Therefore, there exists a triangle

anomaly at the last site by this “orbifolding” procedure. For the X field with a right-handed

zero mode, its boundary conditions are equivalent to removing the left-handed fermion at the

zeroth site. Altogether, we have the “brane” localized triangle anomalies given by

δSbranes =
Q3

24 π2

∫

θN dAN dAN − θ0 dA0 dA0 , (40)

with θj ≡ θj(x) the gauge transformation parameter for each site. Here, δS is the variation of

the action under gauge transformation. Performing gauge transformations on the CS terms,

we have

δSCS =
Q3

24 π2

∫ N
∑

j=1

[θj−1 dAj−1 dAj−1 − θj dAj dAj] = −δSbranes . (41)

Indeed, the addition of the variation of the CS term and the brane-localized triangle anomalies

cancel, making the full theory anomaly free. The anomaly cancellation in both the decon-

structed and continuum theories is depicted in the Fig. 3. The top figure in the left panel in

Fig. 3 depicts the deconstructed theory with a left-handed zero mode ψ
(0)
L , with the one at the

bottom showing the case of a right-handed zero-mode χ
(0)
R . To cancel the chiral anomalies on

the end sites of the moose diagram, we add a summation of WZW terms. In the continuum

limit, shown in the right panel of Fig. 3, the WZW terms lead to the CS term and the full

theory is anomaly free.

We close this section by generalizing the procedure described above for the Abelian case, to

derive the CS terms for non-Abelian and product gauge groups, which will be used later. For

the non-Abelian case the CS terms are

SCS =
1

24 π2

∫

Tr

[

AdAdA +
3

2
A3 dA +

3

5
A5

]

, (42)

which is non-zero only if the group has a non-zero fully-symmetric structure constant or equiv-

alently dabc = Tr[ta{tb, tc}] 6= 0. So, for SU(2), there is no second Chern-Simons character and

no corresponding terms in Eq. (42).

To obtain a complete set of CS terms for realistic models, we also need to obtain the

WZW terms associated with product of gauge groups. For example, let us consider the SM
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Ψ

X

+
∑

SWZW

R

L

L

R

IR

+ “orbifolding”

Ψ + X

+ SCS

UV

Figure 3: The anomaly cancellation for two fermions Ψ and X propagating in the bulk. The
“orbifolding” is chosen to have a left-handed zero mode for Ψ and a right-handed zero mode for
X. To cancel the gauge anomalies, a summation of WZW terms is needed in the deconstructed
theory, corresponding to a CS term in the continuum theory.

gauge bosons propagating in the bulk of the extra dimension and one bulk fermion with charges

(3, 2, Y ) under SU(3)c×SU(2)W×U(1)Y . All the CS terms can be obtained simply by replacing

A in Eq. (42) by A = G+W + Y B. Here, G, W and B are the gauge boson fields of SU(3)c,

SU(2)W , and U(1)Y in the one-form. The trace in Eq. (42) is replaced by Tr = Tr3 Tr2 Tr1 with

the Tri’s acting on different gauge space and Tr1 = 1. So, we have the CS terms for a product

of gauge groups given by

SCS =
1

24 π2

∫

Tr3 Tr2 Tr1 [(G+W + Y B) d (G+W + Y B) d (G+W + Y B)

+
3

2
(G+W + Y B)3 d (G+W + Y B) +

3

5
(G+W + Y B)5

]

,

=
1

24 π2

∫

NcNwY
3B dB dB + Nw Tr3

[

GdGdG +
3

2
G3 dG +

3

5
G5

]

+ 3Nc Y B Tr2

[

(dW +W 2)2
]

+ 3Nw Y B Tr3

[

(dG+G2)2
]

+ boundary terms , (43)

with total derivative terms neglected and Nc = 3 and Nw = 2.
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4 Integrating out Fermion KK modes

Having understood the anomaly cancellation in the extra dimension theory, we now consider the

low energy theory by integrating out the fermion KK-modes, and study the remaining possible

topological interactions among gauge bosons. Although anomaly cancellation is independent

of the fermion localization, the topological interactions of the gauge boson KK modes indeed

depend on the fermion profiles in the fifth dimension. To simplify our discussions in this paper,

we continue working in the limits with µj/vj = 0 or µj/vj → ∞ in the deconstructed theory,

equivalent to fermion zero-modes extremely localized on the IR or UV branes in the continuum.

We believe that these limits capture the general features of warped extra dimension models,

where the all fermion zero modes are localized close to the UV brane except for the right-handed

top quark, which typically is highly localized close to the IR brane.

For the simple U(1) example in Fig. 3, we use the deconstructed theory as a guide to perform

the integration of the fermion KK modes. Taking the limit µj/vj → ∞ for both Ψ and X,

there are effectively no chiral-symmetry breaking links and all we have are vector-like fermions,

except on the end sites of the moose diagram. Then, after we integrate out these heavy vector-

like fermions, no additional WZW terms are generated in the deconstructed theory. So, in the

low energy theory, we have one left-handed zero mode ψ
(0)
L on the N -th site, one right-handed

zero mode χ
(0)
R on the zeroth site and the original summation of WZW terms. Referring back

to the continuum theory, we have ψ
(0)
L on the IR bane, χ

(0)
R on the UV brane and the original

CS term in the bulk, which is schematically shown as the Case I of Fig. 4. The CS term in the

bulk contains the topological interactions among gauge bosons.

Taking the µj/vj → 0 limit for both fermions and integrating fermion KK modes, the left-

handed zero mode ψ
(0)
L is localized on the zeroth site and the right-handed zero mode χ

(0)
R is

on the N -th site. Furthermore, there is a sum of WZW terms corresponding to the ψ
(0)
L tower

and another one corresponding to the χ
(0)
R tower. One of the sums of WZW terms cancels the

original WZW terms and leaves just one sum of WZW terms, which has opposite sign with

respect to the original one. In the continuum limit, shown in the Case II of Fig. 4, we have ψ
(0)
L

on the UV brane and χ
(0)
R on the IR brane. The summation of CS terms is 2Seff +SCS = −SCS,

with Seff = −SCS in Eq. (39) corresponding to the summation of WZW terms. The remaining

action is again anomaly free. For most of warped extra dimension models the right-handed zero

mode of the top quark is localized close to the IR brane, whereas the left-handed zero mode is

moderately UV-localized. Therefore, the Case II in Fig. 4 can be used as an approximation for
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the top quark contributions in a realistic model. The remnant CS term in the bulk contains

physical interactions among gauge boson KK modes. This result agrees with our intuition in a

sense that because of the different localizations of top quark left and right-handed zero modes,

a nontrivial topological interaction remains in the low energy theory.

cL ≪ 1
2 cR ≪ −1

2 cL ≫ 1
2

cR ≫ −1
2

cL ≫ 1
2 cR ≪ −1

2 cL ≪ 1
2 cR ≫ −1

2

Case III Case IV

Case I Case II

SCS

ψ
(0)
L

χ
(0)
R

IRUV UV IR

χ
(0)
R

ψ
(0)
L

ψ
(0)
L

χ
(0)
R

ψ
(0)
L

χ
(0)
R

UV IRUV IR

−SCS

Figure 4: Four different cases for the remaining low energy theory after integrating out heavy
fermions. All cases are anomaly free. For the Case I and II, the left-handed and the right-
handed zero modes are localized in different branes. This leads to a CS term, which contains
physical interactions among gauge boson KK-modes. For the Case III and IV, the left-handed
and the right-handed zero modes are localized in the same brane and no physical topological
interactions are left.

Let us now consider the case where both the left-handed and right-handed zero modes are

UV-localized. In the deconstructed picture this is achieved by taking the µj/vj → 0 limit for

the ψ
(0)
L tower, and µj/vj → ∞ for the χ

(0)
R one. Integrating out fermion KK modes, there

is only one summation of WZW terms generated from the ψ
(0)
L tower, which is canceled by

the original WZW terms in the theory. The χ
(0)
R tower has only vector-like mass terms and
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therefore does not lead to any WZW terms. Therefore, as illustrated in the Case III of Fig. 4,

we only have two chiral zero modes localized in the UV brane and no additional terms in the

bulk. The same result is obtained for the case with both zero modes localized in the IR, by

switching the limits, and is shown in the Case IV of Fig. 4. In most realistic warped extra

dimension models, and in order to satisfy various constraints including electroweak precision

observables and flavor changing processes, the first two generations of SM fermions have both

left and right-handed zero modes localized towards the UV brane. So, Case III can be thought

of as an approximate description of the first two generations of fermions as well as the bottom

quark. Then, we see that they do not contribute new physical topological interactions. Once

again, this result agrees with the intuition that if the left and right-handed zero-mode fermions

have the same profile in the fifth dimension, the theory is “vector-like” and no new topological

interactions should be generated.

Summarizing the discussion above, we see that when both chiralities of the zero modes are

localized at the same fixed point there are no remnant interactions, whereas such interactions

are generated when left and right-handed zero modes are localized at different ends of the

extra dimension. At least in these simplified cases, obtained in the extreme limits µj/vj → 0

and/or µj/vj → ∞, this confirms the intuition that the presence of these terms is associated

with the different localization of left and right-handed zero modes in the bulk. Finally, in the

more general case with finite values of the bulk fermion masses, we expect that the form of the

remnant interactions should depend on the bulk zero-mode wave-functions, i.e. on the bulk

mass parameters cL and cR. It is possible to obtain this general dependence in the deconstructed

description [21]. However, the continuum limit of the general case will have a complicated non-

local dependence on cL and cR. In order to make things more transparent, we will only consider

the simplified limiting cases in the rest of the paper. They should give us a good estimate of

the types of physical effects we can expect.

5 Topological Physical Processes

In this section we show how the CS terms described in the previous section lead to actual novel

physical processes, as opposed to being just an artifact to cancel the anomalies. Once again,

we step back to the deconstructed description in order to better understand the presence of

these terms. Throughout the rest of the paper we will make use of the results obtained for the

limit µj/vj → 0, corresponding to a UV-localized left-handed zero mode and an IR-localized
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right-handed zero mode (see Case II in Fig. 4). As we discuss in the next section, we will use

this setup as an approximation to warped extra dimension models where tR is the only fermion

significantly localized towards the TeV brane.

We are interested in physical processes involving gauge bosons and KK gauge bosons from

topological interactions. For these processes, the localized zero-mode fermions also contribute

to gauge boson interactions through triangular diagrams 2. In the deconstruction language,

their contributions can be obtained by adding a Wilson mass term for the chiral fermions:

λ χ̄R,N U ψL,0 + h.c., with U ≡ UNUN−1 · · · U2U1 connecting the two end sites. The corre-

sponding moose diagram and the related continuum theory are illustrated in Fig. 5. Integrating

Ψ

X

R

L

L

R

IRUV

χ
(0)
R

ψ
(0)
L

Snon-local

Snon-local

+
∑

SWZW

−SCS

Figure 5: The triangular loop contribution to the gauge boson KK mode interactions from
fermion zero modes can be replaced by a non-local link in the deconstructed theory and a Wilson-
like non-local interaction in the continuum theory.

out these two chiral fermions, leads to one more term in the topological Lagrangian in addition

to the CS term. The total topological interactions for the U(1) case now are

Stopo = − Q3

48 π2

∫ N
∑

j=1

[

2Aj−1 dAj−1Aj + 2Aj−1 dAj−1Uj dU
†
j + U †

j dUj dAj−1Aj

+ 2AN dAN A0 + 2AN dAN U dU
† + U † dU dAN A0 − p.c.

]

, (44)

2Actually, those triangular loop contributions from zero-mode fermions are important to provide 4D gauge
invariant interactions after combined with interactions from the CS terms.
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The above interaction is gauge invariant and captures all the necessary topological interactions.

Before proceeding, we want to emphasize the fact that there are no topological interactions

among gauge bosons in the two-site model. The above equation is identically zero for N = 1.

However, for N = 2 in the three-site model with (+,+) boundary conditions for the gauge fields

(i.e. if the gauge symmetry is preserved in the low energy theory), one does have a remnant

physical interaction: B2B1 dB0, with Bi as the i’th KK-mode gauge bosons. Thus, these

remnant interactions will also be present in the continuum, although for the (+,+) boundary

conditions they will have to involve the first and second KK modes. On the other hand, if (+,−)

boundary conditions are imposed, the zero mode becomes massive and two more interactions

are allowed for this case: B2B1 dB1 and B1B0 dB0.

Taking the continuum limit of (44), the product of link fields becomes a Wilson line con-

necting from the UV brane to the IR brane:

U = exp

(

−i
∫ L

0

dy A5 (y)

)

. (45)

Thus, the complete topological interactions are not just given by the CS terms, but we must

also add the non-local terms resulting from the second line in (44). This results in

− Stopo = SCS −
Q3

48 π2

∫

d4x
[

2A(L) dA(L)A(0) + 2A(L) dA(L)U dU †

+U † dU dA(L)A(0) − p.c.
]

. (46)

One can explicitly check the gauge invariance of the above expression. The last term corresponds

to the non-local link in Figure 5. In the unitary gauge, A5 = 0 and U = 1, we have

− Stopo =
Q3

24 π2

∫

dx5 AdAdA +
Q3

24 π2

∫

d4x [A(0) dA(0)A(L) − A(L) dA(L)A(0)] .(47)

This action leads to interactions among KK gauge bosons. In the rest of this Section, we will

compute the form of certain triple and quartic topological interactions in various examples,

which are going to be useful for phenomenological applications.

Abelian Gauge Group:

Using Eq. (47) and decomposing the 5D gauge boson into 4D KK modes and concentrating

on the zero and first KK modes, we have the following interactions:

− Stopo =
Q3 ḡ3

1

24π2L3/2

∫

d4xA(0)dA(0)A(1)

{
∫ L

0

dy 2
[

f 1(y) f 0(y) ∂y f
0(y) − f 0(y) f 0(y) ∂y f

1(y)
]

+ f 1(L) f 0(0) f 0(0) − f 1(0) f 0(0) f 0(L) − f 1(0) f 0(L) f 0(L) + f 1(L) f 0(L) f 0(0)
}

. (48)
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Here, ǫµνρ5σ = −ǫµνρσ is used, and ḡ1 is a 5D gauge coupling with mass dimension −1/2.

For (+,+) boundary conditions for the gauge bosons, we have a constant f 0. Then, it is

straightforward to show that the coefficient of A(0) dA(0)A(1) vanishes.

− Stopo =
Q3

24 π2

∫

d4xA(0) dA(0)A(1) × 0 . (+,+) (49)

This reflects the fact that the gauge symmetry is unbroken and this gauge-symmetry-violating

operator should be vanishing. However, if there was a boundary-localized Higgs field breaking

the gauge symmetry, this term will survive, with its coefficient suppressed by the square of the

ratio of the localized VEV over the IR brane scale.

For the case of (+,−) boundary conditions, we have f i(L) = 0. For this case, only CS terms

contribute to the topological interaction and the coefficient of A(0) dA(0)A(1) is non-zero and is

− Stopo ≈
Q3 ḡ3

1

24 π2L3/2

∫

d4xA(0) dA(0)A(1) (− 2.4
√
kL)

≈ Q3 g3
1

24 π2

∫

d4xA(0) dA(0)A(1) (− 2.4
√
kL) (+,−) , (50)

with the 4D gauge coupling g1 ≡ ḡ1/
√
L and kL ≫ 1. Once again, the non-zero value of the

coefficient reflects the fact that all gauge symmetries are broken.

Non-Abelian Gauge Group

We consider the non-Abelian gauge group SU(3)c. In the unitary gauge, the total topological

interaction is given by

− Stopo =
1

24 π2

∫

Tr

[

GdGdG +
3

2
G3 dG +

3

5
G5

]

− 1

48π2

∫

Tr
[

G(L) dG(L)G(0)

+ dG(L)G(L)G(0) − G(0) dG(0)G(L) − dG(0)G(0)G(L)

+G3(L)G(0) − G3(0)G(L) − 1

2
G(0)G(L)G(0)G(L)

]

. (51)

Although the situation of the triple gauge boson interaction is similar to the one in the Abelian

case, we show the explicit result here because of its phenomenological relevance. For the relevant

case with (+,+) boundary conditions, we are interested in the interactions involving the zero-

mode gluon with the first and second KK gluons: G(2)G(1)G(0). These can be derived from (51)

22



and they are of the form

− Stopo =
3 ḡ3

3

24π2 L3/2

∫

Tr
[

G(2)G(1)dG(0)
]

×
{

(

f 1(L)− f 1(0)
) (

f 2(L) + f 2(0)
)

− 2

∫ L

0

dyf 2(y) ∂yf
1(y)

}

, (52)

where again we have used a flat profile for the zero massless mode. Computing the coefficient

explicitly for the (+,+) wave-functions results in

− Stopo ≃
3 g3

3

24π2

∫

Tr
[

G(2)G(1)dG(0)
]

(−3 k L) , (53)

where g3 is already the 4D SU(3)c gauge coupling. There is also a quartic interaction associated

with this one by gauge invariance: G(2)G(1)G(0)G(0). Its coefficient is identical to the one in

(52) up to a factor of g3, and can be thought of as replacing the operator in (52) by the

gauge-invariant combination G(2)G(1)(dG(0 + g3G
(0)G(0)). For instance, and as we will show

in the next section, both these contributions must be present when considering the process

pp −→ G(1)G(2), not only because they are of the same order in g3 but also by requiring gauge

invariance. Although this process involves the second KK mode of the gluon, the fact that it

is relatively unsuppressed makes it of phenomenological relevance. This is specially the case

for Higgsless models, where the overall KK-mass scale is considerably lower than in most other

warped extra dimension scenarios. We will study the discovery potential of this phenomenology

in the next section.

Finally, considering generic quartic interactions for (+,+) KK gluons, there is always a

trace over four SU(3)c generators given by

Tr[ta tb tc td] =
−ifadedebc + ideadfbce + deaddebc − debddeac + decddeab

8
+
δadδbc − δacδbd + δabδcd

4Nc
.(54)

But since the Lorentz indexes are contracted with the totally anti-symmetric ǫ tensor, one

can at most have two identical KK modes in the interaction. As a consequence, there are no

interactions like G(0)G(0)G(0)G(0) and G(0)G(0)G(0)G(1).

Product Gauge Groups

Finally, we generalize to the case of product gauge groups. Specifically, we consider a

SU(3)c×U(1)Y gauge group and two fermions with charges (3, Y ). We want to study the case

when SU(3)c always has a massless mode corresponding to the gluon. We then choose (+,+)
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boundary conditions for the SU(3)c gauge fields. We are particularly interested in the coupling

among two SU(3)c KK modes and one U(1)Y KK mode. The contributions from the CS terms

can be read off Eq. (43), while the additional non-local terms are introduced following the

discussion at the beginning of this section. The interaction with the lowest total KK number is

− Stopo =
3 Y ḡ1 ḡ

2
3

24 π2L3/2

∫

Tr [B(0) dG(0)G(1)]

×
{

∫ L

0

d y 2 f 1
G(y) ∂5 f

0
B(y) + [f 0

B(0) − f 0
B(L)][f 1

G(0) + f 1
G(L)]

}

, (55)

where a constant value for f 0
G(y) is used. Choosing (+,+) boundary conditions for the U(1)Y

gauge bosons, we also have f 0
B(y) to be y independent. Then, we obtain

− Stopo =
3 Y ḡ1 ḡ

2
3

24 π2L3/2

∫

d4xTr[B(0) dG(0)G(1)] × 0 (+,+) , (56)

reflecting the unbroken gauge symmetry. On the other hand, for (+,−) boundary conditions

for U(1)Y gauge bosons, the interaction is non-vanishing and is given by

− Stopo ≈
3 Y ḡ1 ḡ

2
3

24 π2L3/2

∫

d4xTr3 [B(0) dG(0)G(1)] (2 −
√

2)
√
k L

=
3 Y g1 g

2
3

24 π2

∫

d4x
(2 −

√
2)

2

√
k L ǫµνρσ B(0)

µ ∂ν G
(0)
a,ρG

(1)
a,σ (+,−) , (57)

for k L≫ 1, where gi = ḡi/
√
L are the 4D gauge couplings. One can check that the coefficient

of the gauge-symmetry-violating operator, B(1) dG(0)G(0) actually vanishes.

For quartic gauge boson interactions, we restrict ourselves to interactions with a total

KK number below 2. This leaves only four possible interactions generated by the CS terms:

B(0)G(0)G(0)G(0), B(1)G(0)G(0)G(0), B(0)G(0)G(0)G(1). Again, we fix the boundary conditions for

SU(3)c to be (+,+). Independently of the boundary conditions for the U(1)Y field, the coeffi-

cients of B(0)G(0)G(0)G(0) and B(1)G(0)G(0)G(0) vanish due to the preserved gauge invariance of

the zero-mode theory. On the other hand, the coefficient of B(0)G(1)G(0)G(0) is given by the

expression

− Stopo =
3 Y ḡ1 ḡ

3
3

24 π2L2

∫

d4xTr3 [B(0) G(1)G(0)G(0)]

×
{

∫ L

0

d y 2 f 1
G(y) ∂5 f

0
B(y) + [f 0

B(0) − f 0
B(L)][f 1

G(0) + f 1
G(L)]

}

, (58)
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which has a coefficient identical to the one of B(0)dG(0)G(1) in Eq. (55). Once again, this is

a consequence of the SU(3)c gauge symmetry. Adding Eq. (55) and Eq. (58), we obtain the

SU(3)c gauge-invariant operator B(0)G(1) (dG(0) + g3G
(0)G(0)). Explicitly, the quartic coupling

coefficient is, for the (+,+) boundary conditions for the U(1)Y field

− Stopo =
3 Y ḡ1 ḡ

3
3

24 π2L2

∫

d4xTr3 [B(0)G(1)G(0)G(0)] × 0 (+,+) , (59)

whereas for the (+,−) boundary conditions is given by

− Stopo ≈
3 Y ḡ1 ḡ

3
3

24 π2L2

∫

d4xTr3 [B(0)G(1)G(0)G(0)] (2 −
√

2)
√
k L

=
3 Y g1 g

3
3

24 π2

∫

d4x
i (2 −

√
2)

4

√
k L ǫµνρσ fabc B(0)

µ G(1)
a,ν G

(0)
b,ρ G

(0)
c,σ (+,−) , (60)

We can easily obtain the coefficient for the interaction B(1)G(1)G(0)G(0) by replacing f 0
B

with f 1
B in Eq. (58). Once again, for (+,+) boundary conditions for the U(1)Y the coefficient of

B(1) dG(0)G(1) vanishes, whereas for (+,−) boundary conditions, their coefficients are non-zero.

To summarize, in order to have topological interactions among gauge bosons with (+,+)

boundary conditions one needs to include the 2nd-KK mode. This is generically the case in

the warped extra dimension models with gauge bosons and fermions propagating in the bulk.

Since the current constraints on the compactification scale are such that the 2nd-KK modes

for gauge bosons must have masses above ∼ 5 TeV, we do not anticipate that the topological

interactions in this model can be discovered at the early stages of the LHC. It is possible to

evade the need for the 2nd-KK mode in warped extra dimension models where at least one of

the gauge fields has (+,−) boundary conditions. For instance, this is the case in Higgsless

models, where the electroweak symmetry is broken in the IR brane by boundary conditions.

This leads to the appearance of non-vanishing topological interactions in these scenarios. As

an example in Higgsless models, there will be interactions involving the first KK-gluon with a

Z and a gluon, leading to potentially interesting new signals. Other interactions involving only

electroweak KK gauge bosons or zero modes are also generated. In the next section we study

the phenomenological implications of some of these novel interactions at the LHC.

6 Phenomenology of Topological Interactions

We are now in a position to study the phenomenological consequences of the remnant topological

interactions discussed above. We specifically consider three types of scenarios with a warped
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extra dimension: Higgsless models, typical bulk warped models with a light Higgs localized near

the IR brane, and finally the model of Ref. [15] with an implementation of KK parity, which

we show is broken by the remnant topological interactions. Since the form of the topological

interactions depends on the details of the zero-mode localization in the 5D bulk, we will obtain

them in the simplified picture where tR is completely IR-localized, and all other zero modes,

including tL, are localized on the UV brane. As shown in Section 3, in this setup only tL and tR

contribute to the topological interactions. We hope that this schematic approximation will give

a good estimate of the correct answer. In realistic warped extra dimension models both tR and

tL are less localized, so we expect that the top quark contribution to the topological interactions

will be somewhat smaller. On the other hand, we also neglect the b-quark contributions which

could be comparable if bL is far from the UV brane where bR is assumed to be localized. We

will address the corrections to these approximations in Ref. [21], where we will present the most

general form of the topological interactions.

Although in general, as it was shown in Sections 3 and 5, two KK modes are needed if the

gauge symmetry is unbroken. The breaking of the electroweak symmetry either by boundary

conditions or by a Higgs VEV allows for effective interactions not involving the second KK

mode. We also study the interactions involving a zero-mode gluon with the first two KK

modes, since it is present in all models and it has the largest possible coefficient among the

topological interactions. This is particularly important in Higgsless models, where the overall

KK-mass scale is smaller than in other cases.

6.1 Higgsless Models

Here we study the topological interactions in Higgsless models. In the Higgsless scenario [24],

the gauge symmetry in the bulk is SU(2)L×SU(2)R×U(1)B−L with AL a
M , AR a

M and BM as their

gauge bosons. On the Planck brane, SU(2)R × U(1)B−L breaks down to U(1)Y hypercharge.

On the TeV brane, SU(2)L × SU(2)R breaks to SU(2)D. So, the final unbroken symmetry is

only U(1)em. In this model, the W and Z gauge bosons have masses given by

M2
W =

k2 e−2 k L

k L
, M2

Z =
g2
5 + 2 g̃2

5

g2
5 + g̃2

5

k2 e−2 k L

k L
. (61)

Here, g5 is the gauge coupling of the two SU(2)’s and g̃5 is the gauge coupling of U(1)B−L. The

physical W gauge boson determines one combination of parameters: k and L. Up to leading
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order in 1/(kL), the relation between the 5D and the 4D gauge couplings is

g2 =
g2
5

L
, g′2 =

g2
5 g̃

2
5

(g2
5 + g̃2

5)L
, e2 =

g2
5 g̃

2
5

(g2
5 + 2 g̃2

5)L
. (62)

The presence of the SU(2)R ensures that the ρ parameter is one at leading order in 1/(kL).

We first consider the topological interactions involving a Z, a gluon and a KK gluon. These

are originated by CS terms containing two 5D gluon fields and a U(1)B−L field. These inter-

actions are made possible in Higgsless models since the part of the Z that comes from the

U(1)Y gauge boson has a non-zero mode component. In this model, all the three neutral gauge

bosons: B, AL 3 and AR 3 contain the physical Z boson. The fraction for the B gauge boson is

approximately

f
(Z)
B (y) ≃ −

√

g2
5 + g̃2

5

g2
5 + 2g̃2

5

g5g̃5

g2
5 + g̃2

5

[

1 +
g2
5 + 2g̃2

5

g2
5 + g̃2

5

L− y
2L

e−2k(L−y)
]

, (63)

which is almost flat. This is because the Z boson is mainly contained in AL 3 and AR 3, one

linear combination of which has a “−” boundary condition on the IR brane. Substituting

f
(Z)
B (y) into Eq. (55), we obtain the coefficient of the ZG(0)G(1) contribution

∫ L

0

d y 2 f 1
G(y) ∂5 f

(Z)
B (y) + [f

(Z)
B (0) − f

(Z)
B (L)][f 1

G(0) + f 1
G(L)] ≈

√

g2
5 + 2g̃2

5

g2
5 + g̃2

5

g5g̃5

g2
5 + g̃2

5

1

5
√
kL

.(64)

In this way the full topological interaction has the form

− Stopo =
3Qsum g̃ g

2
3

24 π2

∫

d4x

√

g2
5 + 2g̃2

5

g2
5 + g̃2

5

g5g̃5

g2
5 + g̃2

5

1

5
√
kL

ǫµνρσ 1

4
ZµG

(0)
a,νρG

(1)
a,σ

=
3Qsum e g

2
3

24 π2

∫

d4x
cos θW

sin3 θW

1

5
√
kL

ǫµνρσ 1

4
ZµG

(0)
a,νρG

(1)
a,σ

≡ F
∫

d4x ǫµνρσ 1

2
ZµG

(0)
a,νρG

(1)
a,σ , (65)

where we have used the relation between 5D and 4D couplings, and Qsum adds all the U(1)B−L

charge contributions and depends on the choice of fermion representation in the 5D bulk. In

order to give an estimate in a specific example, we choose the bulk fermions to transform as

QL = (tL, bL)T ∼ (3, 2, 1)1/6 and QR = (tR, b
′
R)T ∼ (3, 1, 2)1/6, resulting in Qsum = (1/6+1/6) =

1/3. The mass of G(1) in this model is given by MG(1) ≈ x1 k e
−kL = 2.45

√
k LMW , which is

approximately 1.2 TeV. From this action, we can read the Feynman diagram for triple gauge
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G(1)
a,σ

= F ǫµνρσ kν

q

p

k

ga,ρ

Zµ = − i g3F ǫµνρσ fabc

gb,νZµ

G(1)
a,σ

gc,ρ

Figure 6: Feynman diagrams for triple and quartic gauge boson interactions from topological
interactions in the Higgsless model. The coefficient F is defined in Eq. (65).

boson and quartic gauge boson couplings. To estimate the size of the effect we look first at the

partial width for the newly induced decay channel for the first KK-gluon via the topological

interaction. Using the triple gauge boson coupling in Fig. 6, the topological decay width of

G(1) is given

Γ(G(1) → Z + g) =
1

96 π

M3
G(1)

M2
Z

F2 = MG(1)

x2
1Q

2
sum αα

2
c

9600 π2

cos4 θW

sin6 θW

≈ 10−7MG(1) . (66)

where the longitudinal enhancement of the Z somewhat compensates the 1/
√
kL suppression

factor in the coupling. However, this partial width is still extremely small, implying that the

topological decay channel cannot compete with the fermionic decay modes, unless all fermions

have a flat profile and therefore have highly suppressed couplings to the first KK-gluon. As

a result, processes involving this interaction at the LHC such as pp → G(1)Z, have a very

suppressed production cross section.

Also of interest is to compute the effects driven by the [SU(3)c]
3 CS term with the lowest

possible KK number. This corresponds to the G(0)G(1)G(2) interaction as discussed in Section 5.

As discussed there, this interaction is the least suppressed one and is present in all models. It

is more relevant in Higgsless models since in them the KK-mass scale needs to be lower than in

more generic warped extra dimension theories. Therefore, the presence of the second KK gluon

in the interaction may not necessarily preclude its observation at the LHC. From the triple

interaction in Eq. (53) we obtain the Feynman rule depicted in Figure 7, with the coefficient

defined as

C3G =
g3
3

8π2
Nf

3

4
kL , (67)

where Nf is the number of chiral colored fermions contributing to the appropriate CS term. In
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G
(1)
b,ν

= C3G fabc ǫµναβ kα

k

G(2)
a,µ

G
(0)
c,β

Figure 7: Feynman diagram for the triple interaction G(0)G(1)G(2). The coefficient C3G is
defined in (67).

our case, Nf = 2, since there are two left-handed anomalies associated with the QR multiplet.

The coupling is large enough that it results in a non-negligible contribution to the G(2) decay

width. This is given by

Γ(G(2) → G(1) + g) =
C2

3G

32 π

(

M2
G(2) + M2

G(1)

) (

M2
G(2) − M2

G(1)

)3

M2
G(1) M

5
G(2)

,

=
9α3

c N
2
f k

2 L2

512 π

(x2
2 + x2

1) (x2
2 − x2

1)
3

x2
1 x

2
2

MG(2) , (68)

with x1 ≈ 2.45 and x2 ≈ 5.56, obtained from the roots of Bessel functions. For instance, for

MG(1) = 1.2 TeV, corresponding to MG(2) = 2.7 TeV, evaluating αs(MG(2)), for Nf = 2 and

kL ≈ 37.5, we have

Γ(G(2) → G(1) + g) ≈ 0.02MG(2) . (69)

Thus, we see that this decay mode of the second KK mode of the gluon induced by topological

interactions is significant, due to the enhancement from the large wave-function overlapping

factor k L ∼ 35. We can compare this decay channel of G(2) with its decays to fermions. Al-

though these are more model dependent, we can estimate them by making use of the dominant

fermion decay channel, G(2) → tRt̄R, since tR is the most IR-localized zero-mode quark. Assum-

ing a value for the bulk mass parameter ctR large enough to be consistent with our approximate

calculations for the topological interactions, the branching fraction into G(1)g is of the order of

a few percent. For instance, for ctR ≃ 3 we have Br(G(2) → G(1) + g) ≃ 0.04. The coupling

G(0)G(1)G(2) is also large enough so as to make it interesting to estimate the cross section for

pp → G(1)G(2) induced by this interaction. Given that the invariant mass of these events are

larger than 1 TeV, it is enough to use qq̄ → G(1)G(2) to estimate this cross section, since the
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quark parton distribution functions are dominant in this energy regime. We obtain

σ(qq̄ → G(1)G(2)) =
C2

3G g
2
3

72 π ŝ3M2
G(1) M

2
G(2)

√

(ŝ + M2
G(1) − M2

G(2))2 − 4 ŝM2
G(1) (70)

×
[

M2
G(1)(8 ŝM

2
G(2) − M4

G(2) + ŝ2) − M4
G(1)(M

2
G(2) + 2 ŝ) + M6

G(1) + (M3
G(2) − ŝMG(2))2

]

,

which, for MG(1) = 1.2 TeV results in σ(pp→ G(1)G(2)) ≃ 1 fb. We show the production cross

section at LHC for two different center of mass energies in Fig. 8, as a function of the mass

of the first KK gluon. We can see that for MG(1) masses consistent with Higgsless models, a
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Figure 8: The production cross section of pp→ G(1) +G(2) as a function of the first KK gluon
mass at the LHC, for

√
s = 14 and 10 TeV. Only the qq̄ contributions are taken into account.

This result applies to all warped extra dimension models as long as SU(3)c is a bulk gauge
symmetry and is independent of the details of the fermion sector.

production cross section of several fb can be obtained at the LHC with
√
s = 14 TeV. For

the heavier masses typically required in warped extra dimension models with a light Higgs,

the cross section drops considerably below 0.1 fb, making its observation at the LHC very

challenging. We emphasize that these interactions are present in all warped extra dimension

models, and their strength is very model-independent. However, the presence of the second KK

gluon makes them only relevant in Higgsless models, since the higher KK-mass scale in other

scenarios makes its production cross section too small for early observation at the LHC.
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6.2 The Standard Warped Extra Dimension Model

In this section, we address the traditional warped extra dimension scenarios, which typically

have an IR-localized light Higgs. The gauge symmetry in the bulk is SU(2)L×SU(2)R×U(1)X ,

with the gauge bosons having (+,+) boundary conditions. Choosing the same gauge coupling

for SU(2)L and SU(2)R as gL and the gauge coupling for U(1)X as gX , we have

g′ =
gX gL

√

g2
L + g2

X

, e =
gL g

′
√

g′2 + g2
L

, or gX =
e g′

√

2 e2 − g′2
, gL =

e g′
√

g′2 − e2
. (71)

The first topological interaction involving two KK modes is X(2)G(0)G(1). Substituting

f
(2)
X (y) into Eq. (55), we have the wave-function overlapping part as

∫ L

0

d y 2 f 1
G(y) ∂5 f

2
X(y) + [f 2

X(0) − f 2
X(L)][f 1

G(0) + f 1
G(L)] ≈ − 3.0 k L . (72)

After electroweak symmetry breaking, the physical Z boson mainly contains zero modes with

a small fraction in the higher KK-modes. The mixing angle between the Z boson and X(2) can

be written as [25]

sin θ02X ≈ −
M2

Z

M2
X(2)

√

2 cos2 θW − 1
√
k L . (73)

Here MX(2) ≈ 5.57 k e−k L ≈ 2.3MG(1). For MG(1) = 2 TeV and kL = 34, we have sin θ02X ≈
0.0024. Similar to the Higgsless model, we have FRS given by

FRS =
3Qsum gX g

2
3

24 π2

(−3.0) k L

2
sin θ02X =

3Qsum e g
2
3

24 π2

3.0 k L
√
k L

2

M2
Z

2.32M2
G(1)

. (74)

The topological decay width of G(1) in this model is

Γ(G(1) → Z + g) =
1

96 π

M3
G(1)

M2
Z

F2
RS = MG(1)

0.08Q2
sum αα

2
c (kL)3M2

Z

96 π2M2
G(1)

≈ 2× 10−7MG(1) , (75)

for Qsum = 1, kL = 34 and MG(1) = 2 TeV. Thus, we conclude that in warped extra dimension

scenarios with an IR-localized Higgs thes topological interactions are very suppressed, implying

that their observation at colliders would require luminosities larger than the ones to be achieved

at the LHC. Although the interaction gG(1)G(2) is also present in this model, unlike in Higgsless

models in the previous section its effects are highly suppressed by the fact that the G(2) mass

exceeds 5 TeV, pushing the associated production of G(1) and G(2) out of the reach of the LHC

even though the couplings are unsuppressed.
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6.3 The Warped Extra Dimension Model with KK Parity

As a last phenomenological application, we consider the consequences of topological interactions

in a warped extra dimension model with KK parity, as proposed in Ref. [15]. We will show that

in this model KK parity is broken by the topological interactions. An immediate consequence

of this breaking is that the lightest KK-odd particle is unstable, and therefore is not a good

dark matter candidate 3. Here we study the gravitationally stable model of Ref. [15], which

puts the UV brane at the fixed point of a Z2 reflection in the compact dimension. Thus, with

the extra dimension defined in the interval y ∈ [−L,L], the UV brane is at the origin, and

there are two IR branes at −L and L. The warp factor is symmetric under a Z2 reflection. The

doubling of the physical space implies the existence of twice the KK modes, which are now even

or odd under the Z2 reflection symmetry. If the Z2 symmetry is preserved, so is KK parity.

In order to study the presence of topological interactions in these models, we first deconstruct

this IR-UV-IR model. For the purpose of discussing the topological interactions, we will not

consider brane-localized terms, which are only introduced in order to separate the masses of

KK-even and KK-odd gauge bosons. This simplification does not affect our results. The moose

diagrams corresponding to this model are shown in Fig. 9, where the link field is Uj and the

fermion site masses are µj with j = −N,−N + 1, · · · , 0, · · · N − 1, N . For fermions providing

a massless left-handed zero mode (the upper panel of Fig. 9), KK-parity is defined in the

continuum theory as y → −y with ψL,R → γ5 ψL,R. In the deconstructed theory, it becomes

ψj,L → −ψ−j,L and ψj,R → ψ−j,R. To preserve KK-parity, we then require the following

conditions: U−j = −Uj and µ−j = −µj, with 〈Uj〉 = v qj/
√

2 and µj = −g v qcL+j−1/2 as in

Eq. (29). Defining ψ±
L,j ≡ (ψL,j±ψL,−j)/

√
2, ψ±

R,j ≡ (ψR,j∓ψR,−j)/
√

2 and ψ−
R,0 = ψR,0, we have

N KK-even left-handed modes ψ+
L,j=1,2,··· ,N , (N−1) KK-even right-handed modes ψ+

R,j=1,2 ··· ,N−1,

N KK-odd left-handed modes ψ−
L,j=1,2,··· ,N and N KK-odd right-handed modes ψ−

R,j=0,1,··· ,N−1.

Therefore, there is one massless KK-even left-handed zero mode. Following the discussions

of Section 2.2, it can be checked that the equations of motion, spectra and wave-functions of

fermions indeed match the results in the continuum theory of Ref. [15]. For the lower panel,

which provides a massless right-handed zero mode, one can also match the continuum results

with µj = −g v q−cR+j−1/2 and χ±
L,j ≡ (χL,j ∓ χL,−j)/

√
2 and χ±

R,j ≡ (χR,j ± χR,−j)/
√

2. In

Table. 2 we show the different limits leading to extreme localizations of the zero modes on one

of the branes.

3This is similar to what happens in the Little Higgs models with T parity [10]
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1
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Figure 9: Deconstruction of the warped extra dimension with KK parity. The moose diagram
in the upper panel results in a left-handed zero mode, where from left to right the site number
goes from −N to N . We remove the left-handed mode in the zeroth site and two right-handed
modes in the −N-th and N-th sites. A similar diagram is shown in the lower panel to obtain
a right-handed zero mode. The anomalies are canceled in each site. The deconstruction is
manifestly Z2-symmetric.

We want to consider the case with the two chiral zero modes localized at different extremes

of the extra dimension in the continuum theory. In particular, just as we did earlier in this

Section, we consider the situation with an IR-localized right-handed zero mode and a UV-

localized left-handed zero mode. As shown in Table 2 and previously discussed in Section 2.2,

in order to obtain such situation we take the limits µj ≪ vj for the deconstruction with a

left-handed zero-mode, and µj ≫ vj for the one with a right-handed zero-mode. Integrating

out the heavy fermions, results in a summation of WZW terms coming from the ψ KK-modes.

We are also left with two left-handed modes around the zeroth site: ψ+
L,0 and χ−

L,0; and two

right-handed modes: χR,−N on the −N -th site and χR,N on the N ’s site. The KK-parity odd

combination (χR,N − χR,−N )/
√

2 gets a Dirac mass with χ−
L,0. In the end, after integrating
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left-handed fermion right-handed fermion

cL ≫ 1
2

(UV) ↔ µj

vj
→ 0 cR ≫ −1

2
(IR) ↔ µj

vj
→∞

cL ≪ 1
2

(IR) ↔ µj

vj
→∞ cR ≪ −1

2
(UV) ↔ µj

vj
→ 0

Table 2: Matching of the continuum warped extra dimension model with KK parity and the
discretized theory for different limits.

out all heavy fermions we have one massless left-handed mode localized on the zeroth site and

one massless right-handed mode distributed equally on the −N -th site and the N -th site, in

addition to the WZW terms. Then, when going to the continuum limit we have a theory

with massless chiral fermions and KK gauge bosons, with topological interactions among them.

These include the local CS terms resulting from integrating out the ψ KK tower, as well as the

non-local terms induced by the triangle diagrams with the zero modes and the odd KK modes.

This is illustrated in Fig. 10: the upper non-local interactions are from triangular contributions

from the massless fermion zero modes. The lower non-local interactions come from integrating

out the χ−
L,0 and (χR,N − χR,−N)/

√
2. Summing all topological interactions and in the unitary

IRUV

χ
+ (0)
R

−SCS

IR

SCS

χ
+ (0)
R

ψ
+ (0)
L

−1
2 Snon-local

1
2
Snon-local

1
2 Snon-local−1

2 Snon-local

Figure 10: The topological interactions in the warped extra dimension model with KK parity.
The nonzero topological interaction is odd under KK parity. Hence, the KK parity is not
conserved.
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gauge, we arrive at the following gauge invariant action

− Stopo =
Q3

24 π2

∫

ǫ(y)AdAdA+
Q3

24 π2

∫

d4x [A(0) dA(0)A(L) − A(L) dA(L)A(0)]

− Q3

24 π2

∫

d4x [A(0) dA(0)A(−L) − A(−L) dA(−L)A(0)] , (76)

with the function ǫ(y) = 1 for y > 0 and −1 for y < 0. One can easily verify that the non-

vanishing topological interactions are odd under the Z2 transformation y → −y. Therefore,

KK parity in these theories is broken by the topological interactions. As a consequence, the

potential dark matter candidate proposed in Ref. [15] is unstable.

As an example, we show how the lightest KK-odd gauge mode decays into KK-even gauge

bosons. Decomposing the KK gauge fields as

Aµ(x, y) =
∑

i=0,1,···N
f+

i (|y|)A+(i)
µ +

∑

j=1,···N
ǫ(y) f−

j (|y|)A−(j)
µ , (77)

we have the following topological interactions between the lightest KK-even mode A
+(0)
µ and

the lightest KK-odd mode A
−(1)
µ :

− Stopo =
2Q3 ḡ3

1

24π2 L3/2

∫

d4xA+(0)dA+(0)A−(1)

{
∫ L

0

dy 2
[

f−
1 (y) f+

0 (y) ∂y f
+
0 (y)

− f+
0 (y) f+

0 (y) ∂y f
−
1 (y)

]

+ f−
1 (L) f+

0 (0) f+
0 (0) + f−

1 (L) f+
0 (L) f+

0 (0)
}

. (78)

If the gauge symmetry associated with A
+(0)
µ remains unbroken, f+

0 (y) has a flat profile and

the above interaction vanishes. However, in realistic models, the electroweak gauge symmetry

must be spontaneously broken by the VEV of an IR-localized Higgs. Then there will always

be topological interactions involving an odd KK mode with a physical state such as the Z

gauge boson, whose profile is approximately f+
0 (y) + sin θ01 f

+
1 (y) with a small mixing angle

θ01 ∝ (vEW/MKK)2
√
kL. This now induces non-vanishing interactions such as Z dZA−(1).

Hence, the odd KK mode A−(1) can now decay into two Z’s. This is the case for the bosonic

dark matter candidate studied in Ref. [15], a linear combination of the first KK-odd neutral

gauge bosons of SU(2)L, SU(2)R and U(1)X , which can decay into two Z’s: A−(1) → Z Z. The

actual decay width depends on many model parameters including gauge couplings and brane-

localized kinetic terms. However, it is clear that the lifetime of the lightest odd KK particle is

too short in cosmological scales, so that it is not a viable dark matter candidate. This is a very

general result and it does not depend on our approximations regarding zero-mode localization.

As shown in previous sections, the only way the Z2-odd interactions can vanish is if both chiral

zero-modes, left and right handed, are equally localized in the extra dimension.
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7 Conclusions

Extra dimensional theories with chiral zero modes are rendered non-anomalous by the addition

of bulk Chern-Simons terms. Using deconstruction methods we have shown that these terms

not only cancel the localized anomalies but also lead to remnant interactions among gauge KK

and zero modes. We derived our results in the limits of extreme fermion localization, which in

the deconstructed language corresponds to taking the ratio of fermion masses to link VEVs,

µj/vj, either to 0 or to infinity. These simplifying assumptions allowed us to obtain the remnant

topological interactions in a closed form in the continuum limit. However, it is clear from our

derivation that their presence is a generic feature of these theories. We can also conclude from

this simplified treatment that the topological interactions will depend on the zero-mode fermion

bulk profile, as attested by the fact that when both chiralities are localized on the same brane

there are none, whereas if the chiral zero-modes are localized at opposite ends of the orbifold

they are present. The more generic case, for finite values of µj/vj corresponding to zero-mode

fermions with bulk profiles, does not lend itself to a simple form in the continuum limit, and it

will be presented elsewhere [21]. Here, we used our simplified result to approximate the most

important contribution to these terms in warped extra dimension models, which comes from the

zero-mode top quark. We consider the effects as coming from an IR-localized t
(0)
R , and a UV-

localized t
(0)
L , assuming that all other zero modes are UV-localized. This approximation should

give a reasonable estimate of the effects in more realistic models of zero-mode localization. Even

then, we must notice that the answer still is dependent of details of the fermion content of the

model, such as the embedding of fermions in the 5D bulk. Such was the case when computing

the strength of the interactions in Section 6 leading to G(2)G(1)g and G(1)Zg processes. A

different embedding for the right-handed multiplets in the bulk would have led to different

values of Qsum and Nf in (65) and (67) respectively.

In the deconstruction description we showed how for two-site models there are no remnant

interactions, whereas already in the three-site models these are present. In the continuum limit,

this manifest itself in the fact that for the remnant interactions to be non-zero the minimum

interaction must involve a zero mode, plus first and second KK modes, as shown in Section 5.

The remnant topological interactions lead to novel physical processes. We have shown

how to derive these for constructions involving Abelian, Non-Abelian as well as product gauge

groups relevant in various model-building scenarios in warped extra dimensions. In particular,

we considered the interaction involving the first and second KK modes of the gluon with the
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gluon zero mode, G(2)G(1)g, deriving from the CS terms that cancel the [SU(3)c]
3 anomaly.

This is the most un-suppressed topological interaction in warped extra dimension models, due

both to the largest possible product of gauge couplings as well as to the enhancement of the

wave-function overlap among KK modes. The strength of this interaction is large enough to

make it a visible decay mode of the G(2) for the choice of parameters used here, corresponding

to a UV-localized t
(0)
L and an IR-localized t

(0)
R . We also used this interaction to estimate the

cross section for pp → G(1)G(2), plotted in Figure 8 as a function of MG(1) . This interaction is

present in all warped extra dimension models and does not depend on the details of electroweak

symmetry breaking. On the other hand, as we can see from Figure 8, the cross section is large

enough to be observed at the LHC only for models with MG(1) not far above 1 TeV, as it is

the case in Higgsless models. This implies that in Higgsless models the process pp→ G(1)G(2)

induced by the topological interaction G(2)G(1)g can be observed at the LHC. The final state

would consist of four top quarks and a hard gluon jet, with two of the top quarks and the jet

reconstructing to MG(2) and the other two top quarks reconstructing to MG(1) .

Many other processes are induced by the topological interactions. As examples, we con-

sidered the topological interactions induced by the [SU(3)c]
2 U(1)Y CS terms leading to the

gZG(1) vertex. We study the phenomenology of such a unique interaction for different choices

of boundary conditions relevant for warped models with or without a Higgs in Section 6. We

conclude that these coupling are too small to be observable at the LHC, unless the couplings

of G(1) to zero-mode fermions are highly suppressed.

Finally, we have also studied the warped extra dimension model with KK parity, as proposed

in Ref. [15]. Although in this model the anomalies are cancelled by construction, the remnant

topological interactions generated by integrating out KK fermions do break KK parity. Again,

the source of the parity breaking is due to different chiral zero-mode fermion localizations.

Other processes can be easily derived by following the procedure presented in Section 5.

For instance, the [SU(3)c]
2 U(1)Y CS terms also induce the vertex G(1)Z(1)g. Although its

coupling is smaller than that of G(2)G(1)g, the fact that it does not involve a second KK mode

may result in a phenomenologically relevant mechanism for pp → G(1)Z(1) production. Also

potentially interesting are purely electroweak interactions coming from [SU(2)]2 U(1) CS terms,

resulting in couplings such as Z(1)Z(0)Z(0), which in Higgsless models are not suppressed by

wave-function factors.

Among the processes we have not considered are those involving gravitons and their KK

modes, generated by the cancellation of gravitational anomalies. To obtain these would require
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the deconstruction of gravity [26] in a warped extra dimension theory, an interesting problem

in and on itself regardless of its phenomenological applications. Finally, we have not made

an exhaustive study of the topological interactions in all warped extra dimension scenarios.

For instance, it would be interesting to consider the form of these interactions in Gauge-Higgs

unification models [27].

In sum, the observation of topological interactions as the ones studied here would point to

fundamental aspects of the physics underlying the discoveries of new massive gauge bosons at

the LHC. We hope that this work can be the basis for more detailed phenomenological studies

of the collider signals of these topological terms.
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